《建筑给水排水设计标准》GB 50015-2019条文说明 下
1 总 则 (详见《建筑给水排水设计标准》GB 50015-2019条文说明 上)2 术语和符号 (详见《建筑给水排水设计标准》GB 50015-2019条文说
1 总 则 (详见《建筑给水排水设计标准》GB 50015-2019条文说明 上)
2 术语和符号 (详见《建筑给水排水设计标准》GB 50015-2019条文说明 上)
3 给 水 (详见《建筑给水排水设计标准》GB 50015-2019条文说明 上)
4 生活排水 (4.1~4.9 详见《建筑给水排水设计标准》GB 50015-2019条文说明 上)
4.10 小区生活排水
Ⅰ 管道布置和敷设
4.10.2 本条第2款系根据寒冷地带工程运行经验,可减少管道埋深,具有较好的经济效益。埋地塑料排水管的基础是砂垫层,属柔性基础,具有抗冻性能。另外,塑料排水管具有保温性能,建筑排出管排水温度接近室温,在坡降0.5m的管段内排水不会结冻。
4.10.4 本条第1款规定摘自现行国家标准《室外排水设计规范》GB 50014。
4.10.5 本条明确规定在计算小区室外生活排水管道系统时按最大小时流量计算。小区生活排水系统的排水定额要比其相应的生活给水系统用水定额小,其原因是,用水损耗、蒸发损失,水箱(池)因阀门失灵漏水、埋地管道渗漏等,但公共建筑中不排入生活排水管道系统的给水量不应计入。选择85%~95%为上下限的考虑因素是建筑物性质、选用管材配件附件质量、建筑给排水工程施工质量和物业管理水平等。
4.10.8 本条规定是根据原建设部2007年第659号公告《建设事业“十一五”推广应用和限制禁止使用技术(第一批)》中推广应用技术第128项“推广埋地塑料排水管和塑料检查井”。塑料检查井具有节地、节能、节材、环保以及施工快捷等优点,具有较好的经济效益、社会效益和环境效益。
塑料检查井经近十年的推广应用,产品规格系列化,应用技术文件齐全,许多省份出台了禁用黏土砖砌检查井的指令性文件。
4.10.11 地下室顶板覆土层不能满足设置排水检查井时,采用清扫口替代,此类排水管一般是建筑生活排水管道的排出管。
Ⅱ 小区水处理构筑物
4.10.12 根据现行国家标准《污水排入城镇下水道水质标准》GB/T 31962规定,污水排入城镇下水道的水温不得超过40℃。有温度的生活排水余热回收利用,视生活排水排放量,经技术经济比较合理时实施。一般在公共浴场、学生集中淋浴房、游泳池等工程中应用。
有压高温废水一般指蒸汽锅炉排水,高温排水指水热交换器的排污水。这种热交换设备的排水一般水温高但排水量少且不定期,余热回收利用不合理,应采用降温措施。
4.10.13 本条为强制性条文,必须严格执行。本条系根据原国家标准《生活饮用水卫生标准》GB 5749-85二次供水的规定“以地下水为水源时,水井周围30m的范围内,不得设置渗水厕所、渗水坑、粪坑、垃圾堆和废渣堆等污染源”。在《生活饮用水卫生标准》GB 5749-2006版修订时此内容纳入《生活饮用水集中式供水单位卫生规范》第二十六条规定:“集中式供水单位应划定生产区的范围。生产区外围30米范围内应保持良好的卫生状况,不得设置生活居住区,不得修建渗水厕所和渗水坑,不得堆放垃圾、粪便、废渣和铺设污水渠道。”以地下水为水源的一般是远离城市的厂矿企业、农村、村镇,不在城市生活饮用水管网供水范围,且渗水厕所、渗水坑、粪坑、垃圾堆和废渣堆等普遍存在。化粪池一般采用砖或混凝土模块砌筑,水泥砂浆抹面,防渗性差,对于地下水取水构筑物而言也属于污染源。
4.10.14 污水在化粪池厌氧处理过程中有机物分解产生甲烷气体,聚集在池上部空间,甲烷浓度5%~15%时,一旦遇到明火即刻发生爆炸。化粪池爆炸导致成人儿童伤亡的事故几乎每年发生。设通气管将化粪池中聚集的甲烷气体引向大气中散发是降低甲烷浓度是有效办法。通气管可在顶板或顶板下侧壁上引出,通气管出口应设在人员稀少的地方或远离明火的安全地方。
4.10.15 本条规定了化粪池有效容积计算公式。生活污废水合流的每人每日计算污水量按本标准第3.2.1条、第3.2.2条最高日生活用水定额乘以0.85~0.95;每人每日计算污泥量是根据人员在建筑物中逗留的时间长短确定。有住宿的建筑物如住宅、宿舍、旅馆、医院、疗养院、养老院、幼儿园(有住宿)等,人员逗留时间大于4h并小于或等于10h的建筑物,如办公楼、教学楼、试验楼、工业企业生活间;人员逗留时间小于或等于4h的建筑物,如职工食堂、餐饮业、影剧院、体育场(馆)、商场和其他场所。化粪池在计算有效容积时,不论污水部分容积还是污泥部分容积均按实际使用人数确定,表4.10.15-3中根据建筑物性质列出了实际使用人数占总人数的百分数,其中职工食堂、餐饮业、影剧院、体育场(馆)、商场和其他场所化粪池使用人数百分数,人员多者取小值,人员少者取大值。
4.10.17 化粪池的构造尺寸理论上与平流式沉淀池一样,根据水流速度、沉降速度通过水力计算就可以确定沉淀部分的空间,再考虑污泥积存的数量确定污泥占有空间,最终选择长、宽、高三者的比例。从水力沉降效果来说,化粪池浅些、狭长些沉淀效果更好,但这对施工带来不便,且化粪池单位空间材料耗量大。某些建筑物污水量少,算出的化粪池尺寸很小,无法施工。实际上污水在化粪池中的水流状态并非按常规沉淀池的沉淀曲线运行,水流非常复杂。故本条除规定化粪池的最小尺寸外,还规定化粪池的长、宽、高应有合适的比例。
化粪池入口处设置导流装置,格与格之间设置拦截污泥浮渣的措施,目的是保护污泥浮渣层隔氧功能不被破坏,保证污泥在厌氧的条件下腐化发酵,一般采用三通管件和乙字弯管件。化粪池的通气很重要,因为化粪池内有机物在腐化发酵过程中分解出各种有害气体和可燃性气体,如硫化氢、甲烷等,及时将这些气体通过管道排至室外大气中去,避免发生爆炸、燃烧、中毒和污染环境的事故发生。故本条规定不但化粪池格与格之间应设通气孔洞,而且在化粪池与连接井之间也应设置通气孔洞。
4.10.20 生活排水调节池起污水量贮存调节作用。本条规定的目的是防止污水在集水池停留时间过长产生沉淀腐化。
4.10.22 除臭装置排放口位置应避免对周围环境造成危害和影响。除臭装置使用后污水处理站周边大气污染物应低于现行行业标准《城镇污水处理厂臭气处理技术规程》CJJ/T 243规定的最高允许浓度。
4.10.23 生活污水处理设施一般采用生物接触氧化,鼓风曝气。鼓风机运行过程中产生的噪声高达100dB左右,因此,设置隔声降噪措施是必要的。一般安装鼓风机的房间要进行隔声设计,特别是进气口应设消声装置,才能达到现行国家标准《声环境质量标准》GB 3096中规定的数值。
5 雨 水
5.1 一般规定
5.1.1 本标准从保证建筑物结构安全角度出发,要求屋面雨水排水迅速、及时地排至室外管渠或室外地面。当设计种植屋面和蓄水屋面的雨水排水时,设计人员应配合建筑或景观专业,将屋面荷载提供给结构专业,避免超载,影响屋面结构的安全,应按相关规范执行。
当小区地面有雨水控制和资源化利用生态设施时,屋面雨水排水管可采用断接方式,散水排入地面或绿地、坑塘,雨水口溢流排入雨水检查井。
5.1.5 当工程项目有海绵型方面设计时,渗、滞、蓄、净、用、排的设计应符合现行国家标准《建筑与小区雨水控制及利用技术规范》GB 50400的相关规定。
5.2 建筑雨水
5.2.1 内檐沟是指内天沟收集两边斜屋面的雨水,屋面与天沟之间无防水密封或防水密封不严密,天沟溢水会泛入室内的一种结构形式。为提高屋面排水的安全性而增大雨水排水系统宣泄能力。斜屋面的集流面上最远点排至屋面雨水斗集流时间一般为0.5min~1.0min。研究认为集流时间取3min为宜,3min集流时间内平均降雨强度是5min集流时间内平均降雨强度的1.3倍~1.5倍。
5.2.3 由于雨量记录仪的最小单元格为5min,也就是记录5min暴雨的平均值。
5.2.4 对于一般性建筑物屋面、重要公共建筑屋面的划分,可参考建筑防火相关规范的内容。除重要公共建筑以外,可视为一般性建筑。
5.2.5 本条对雨水排水管道工程和溢流设施排水能力作出规定。
1、2 按本标准第5.1.2条的原则,在设计重现期内出现降雨时屋面不应积水,超设计重现期的雨水应由溢流设施排放。本条规定了屋面雨水管道工程的排水系统和溢流设施宣泄雨水能力,两者合计为总排水能力应具备的最小排水能力。
3 本款的规定是针对在无外檐天沟或无直接散水凹形屋面,必须考虑本条第1款、第2款超重现的雨水排水,因此提高雨水排水管道工程与溢流设施的总排水能力,才能保证屋面不积水。对这类屋面可能产生的超荷载应进行结构核算,并且应设置屋面超警戒水位的报警系统。
4 本款的规定是根据一场降雨从小到大的规律,满管压力流排水系统雨水排水管道内流态变化的过程是从重力流→间歇性压力流→满管压力流。如设计重现期选得过大,系统可能在小于设计重现期的降雨时,雨水排水管道系统一直处于重力流与间歇性压力流的非满管压力流状态运行,影响雨水排水管道系统的安全运行。当缺乏重现期资料时,重现期P与设计流量q关系可按表5估算。
表5 重现期P与设计流量q关系估算表
5.2.7 本条规定雨水汇水面积按屋面的汇水面积投影面积计算,还需考虑高层建筑高出裙房屋面的侧墙面(最大受雨面)的雨水排到裙房屋面上;窗井及高层建筑地下汽车库出入口的侧墙,由于风力吹动,造成侧墙兜水,因此,将此类侧墙面积的1/2纳入其下方屋面(地面)排水的汇水面积。
5.2.8 本条引用现行国家标准《屋面工程技术规范》GB 50345的有关规定。伸缩缝、沉降缝统称变形缝,变形缝和防火墙处结构均脱开,并有错位,故天沟布置应以为分界,不应穿越变形缝和防火墙。
5.2.9 一般金属屋面采用金属长天沟,施工时金属钢板之间焊接连接。当建筑屋面构造有坡度时,天沟沟底顺建筑屋面的坡度可以做出坡度。当建筑屋面构造无坡度时,天沟沟底的坡度难以实施,靠天沟水位差进行排水。金属屋面的长天沟可无坡度。
5.2.11 管系排水能力是相对按一定重现期设计的,因此为建筑安全考虑,超设计重现期的雨水应有出路。根据目前的技术水平,设置溢流设施是最有效的,但有些建筑屋面无法设置溢流时,只能提高其管系排水能力。
1 本款的规定是针对外檐天沟排水、可直接散水的屋面雨水排水,其超设计重现期的雨水可直接从天沟或屋面外溢,既保证屋面不会积水,又不会造成次生危害。
2 本款的规定是针对单斗内排水系统和多斗重力流雨水管道系统适应性强的特征,只要按上限值设计的管道系统,均能将此值以下的雨水量安全排泄。百年一遇的雨水量可根据当地雨量计算公式计算而得,也可按本标准第5.2.5条条文说明表5推算。
5.2.13 檐沟排水常用于多层住宅或建筑体量与之相似的一般民用建筑,其屋顶面积较小,建筑四周排水出路多,立管设置要服从建筑立面美观要求,故宜采用重力流排水。
长天沟外排水常用于多跨工业厂房,汇水面积大,厂房内生产工艺要求不允许设置雨水悬吊管,由于外排水立管设置数量少,只有采用满管压力流排水,方可利用其管系通水能力大的特点,将具有一定重现期的屋面雨水排除。
高层建筑、超高层建筑屋面面积较小,不适合采用满管压力流单斗系统,由于立管过长,资用势能过大,管道内容易产生汽化和气蚀以及伴随振动、气暴噪声,所以超高层建筑单斗排水系统宜设计为重力流系统。大型屋面工业厂房、库房、公共建筑通常是汇水面积较大,但可敷设立管的地方却较少,只有充分发挥每根立管泄流量大的作用,方能较好的排除屋面雨水,因此,应推荐采用满管压力流排水。
由于满管压力流排水系统悬吊管坡度几乎平坡,在风沙大、粉尘大的地区,一般为降雨量小的西北地区,容易造成雨水管道淤堵现象,该地区的屋面排水不宜采用满管压力流排水系统。
5.2.14 本条针对大面积雨水排水采用满管压力流排水系统,雨水斗布置在屋面的雨水集水槽时,对集水槽尺寸要求。集水槽平面尺寸可按满管压力雨水斗的格栅罩或反涡流装置的直径再加上不小于50mm的水流通道确定。满管压力流雨水斗的高度一般小于100mm(30mm~50mm),故250mm有效水深能保证满管压力流排水系统正常运行。
5.2.15 本条规定的目的是保证天沟(坑)雨水进入雨水斗有良好的水力条件。由于雨水斗规格尺寸不一,雨水斗的格栅罩可能比天沟宽度还大,故应与土建专业协调,在布置雨水斗的局部天沟尺寸放大。
5.2.16 屋面雨水排水系统应采用成品雨水斗,不得用排水箅子、通气帽等替代雨水斗。根据不同的系统采用相应的雨水斗。重力流排水系统应采用重力流雨水斗,是依据斗前水位溢流排泄雨水,允许掺气。反之亦然,满管压力流排水系统如采用重力流雨水斗,大气进入,负压破坏形成不了满管压力流,达不到设计雨水排水量而使屋面积水。
5.2.19 满管压力流的水力计算通常是按设计重现期的流量进行水力计算,但不同高度的雨水斗实际是排除非同一屋面、集水沟的雨水,屋面位置不同、高度不同、朝向不同,接收的实际降雨强度也会有大的差异,两个屋面可能一个达到设计降雨量,而另外一个远小于设计降雨量,导致系统内的负压被破坏,计算无法解决这种流量差异。
5.2.20 本条引用现行国家标准《住宅设计规范》GB 50096有关条文,规定目的是避免屋面雨水管道设置在套内时产生噪声扰民,或雨水管道损漏造成财产损失。
5.2.21 雨水管道敷设在结构层或结构柱内,雨水管渗漏腐蚀钢筋影响结构安全,雨水管道一旦堵塞,不能维护更换,也会造成屋面积水。
5.2.22 高层建筑雨水排水系统中,立管上部是负压区,下部是正压区,而裙房处于下部,裙房屋面的雨水汇入高层建筑屋面排水管道系统不但会造成裙房屋面的雨水排水不畅,还有可能返溢。
5.2.24 本条对阳台、露台、雨水系统的设置作出规定。
1 本款规定的前提条件是:①屋面雨落水管敷设在外墙;②雨落水管底部间接排水;③有防返溢的技术措施时,阳台雨水排水可以接入屋面雨水立管。
6 本款规定中生活阳台是指厨房外侧的阳台,亦称工作阳台、北阳台,因其面积小且飘入阳台雨水量也少。当生活阳台设有生活排水设备及地漏时,雨水可排入生活排水地漏中,不必另设雨水排水立管。生活排水设施主要是指洗衣机或洗涤盆通过地漏排水。当住宅阳台设有生活排水设备时,其洗涤废水中含有洗涤剂,排入雨水系统后污染雨水排放的水体,应纳入污水系统进污水处理厂处理。
5.2.25 多斗系统不管重力流还是压力流均成悬吊管系统,在室内成为密闭系统。单斗系统,在室内如设检查井与室内埋地管连接,容易造成泛溢,这已在众多工程中造成厂(库)内雨水返溢,造成财物损失。
5.2.26 本条规定中的建筑在卫生、安全方面要求较高,故不适合在建筑物内这些场所设置雨水管道。
5.2.27 本条规定的目的是在屋面汇水范围内一旦一根排水立管堵塞,至少还有一根可排泄雨水。基于雨水斗之间泄流互相调剂和天沟溢流等因素,下列情况下,汇水范围内可只设1根雨水排水立管:①外檐天沟雨落水管排水;②长天沟外排水。
5.2.34 本条系屋面雨水重力流多斗系统按常规重力流排水管渠的设计方法。表5.2.34中雨水斗的最大设计排水流量系根据北京建筑大学在测试平台对河北徐水县兴华铸造有限公司提供的G型重力斗进行了尾管0.5m通水能力测试所得泄流量而确定的(如图4所示)。考虑到树叶杂物在雨水斗处遮挡,相当于增加了雨水斗的阻力,乘以系数0.7。
图4 重力流雨水斗
本标准表G的数据系根据重力流系统立管的最大设计排水流量系按威廉-埃顿(Whly-Eaton)方程式计算,立管管中雨水充满率为0.33时的排水流量确定的。
5.2.35 由于单斗排水不存在斗与斗之间的水力相关平衡问题。其泄流量仅与单斗雨水管道系统设计流态有关。由于单斗排水系统流态可设计为重力流也可设计为满管压力流。单斗重力流排水系统雨水斗的最大设计排水流量是控制在立管充满率0.33时的排水流量。单斗压力流排水系统雨水斗的最大设计排水流量与雨水斗规格、阻力,管材性质和立管高度等因素有关。
表5.2.35单斗压力流排水系统雨水斗的最大设计排水流量系北京建筑大学在测试平台对各种类型的雨水斗在尾管3m、斗前水深小于或等于100mm(或h-q曲线拐点)情况下的最大测试泄流量。
实际工程视具体情况,如气象特征、建筑物高度、物业管理水平等确定打折系数。
5.2.36 本条对满管压力流系统设计作出规定。
1 本款表5.2.36中的值是取用原标准2009版第4.9.16条表中最大测试泄流量基础上乘以系数0.7,同时不能大于单斗压力(虹吸)雨水斗设计泄流量。选择雨水斗的泄流量的目的是确定在屋面汇水面积上布置雨水斗数量,而满管压力流排水管道系统设计雨水流量还是应按本标准式(5.2.1)计算。
2 本款规定是满管压力流屋面雨水排水系统越大,管道水力平衡越不易计算,特别系统在重力流至满管压力流之间的脉冲流运行工况下,更容易造成水力不平衡。
3 本款规定是根据一场暴雨的降雨过程是由小到大,再由大到小,即使是满管压力流屋面雨水排水系统,在降雨初期或末期由于立管中未形成负压抽吸,靠雨水斗出口到悬吊管中心线高差的水力坡降排水,故悬吊管中心线与雨水斗出口应有一定的高差。悬吊管中心线与雨水斗出口的高差宜大于1.0m是源于德国工程师协会准则《屋面虹吸排水系统》VDI 3806-2000版的规定。欧标《建筑物排水沟 第2部分:测试方法》EN 1253-3:2000中虹吸启动流量测试装置图中的雨水斗斗面至排出管过渡段管中心的几何高差为1.0m。
如果悬吊管长度短,连接管管径小于或等于75mm或天沟有效水深大于或等于300mm时,则悬吊管中心线与雨水斗出口的高差可适当减少。
5 本款满管压力流管道系统泄流量大小完全取决于雨水管进、出口的几何高差,如果满管压力流管道系统总水头损失与流出水头之和大于雨水管进、出口的几何高差,系统将达不到设计泄流量而导致屋面积水。根据实际工程中建筑物高度有高有低,大面积的单层厂房一般高度在12m左右,大面积公共建筑高度在40m之内,建议高差H<12m时,管道系统的总水头损失有1.0m的水头富裕;高差H≥12m时,有2.0m~3.0m的水头富裕,以避免管道负压区产生汽化、气蚀和气暴噪声等现象。
6、7 满管压力流多斗悬吊管系统关键在于水力平衡。因各雨水斗排泄屋面雨水量基本均匀,可根据选用管材的沿程阻力和配件的局部阻力进行水力计算,不断调整与水头损失相关参数,达到水力相对平衡。各支管(连接雨水斗的管道)均汇合到悬吊管。悬吊管有较大管径即产生阻力较小,有利于各支管之间的流量平衡。
9 本款满管压力流管道系统的排水由势能转化为动能,在排出口形成射流,容易损坏排水检查井及埋地管道,应采取消能措施,一般采用放大管径降低流速,或设置消能井。
5.2.39 按重力流设计的多层建筑,一般采用外檐天沟雨落水管,敷设于外墙,雨水斗下有一个落水斗过渡,管材采用符合国家标准《建筑排水用硬聚氯乙烯管材》GB/T 5836的规定。对于高层建筑外墙敷设的雨落水管也可采用上述管材。但对于高层公共建筑由于建筑外立面玻璃幕墙等装饰不能敷设的雨落水管,雨水立管必须设置于建筑物内,据工程反馈信息,雨水立管吸瘪的事例不少:①采用地漏或通气帽替代重力雨水斗,被塑料袋堵住,屋面积水,维护人员挪开塑料袋瞬间产生负压抽吸(虹吸)流。②将有顶板或整流罩等防止气体进入的压力流雨水斗替代重力流雨水斗,使重力流变成满管压力流。
由于现行国家标准《建筑给水排水及采暖工程施工质量验收规范》GB 50242规定,“安装在室内雨水管道安装后应做灌水试验,灌水高度必须到每根立管上部雨水斗”,因此,高层建筑如采用增厚耐压的塑料管材及配件,其管道系统(含管道、配件、伸缩节组成的系统)耐压不应小于雨水立管静压。超高层建筑屋面雨水排水立管建议采用金属管材,当超高层建筑屋面雨水排水立管采用钢塑复合管时,建议采用涂塑管,因为钢管内衬的塑管也有吸瘪的事例发生。
满管压力流雨水排水系统在立管上半部、悬吊干管、悬吊支管、连接管均处于负压状态,仅在立管下半部位至排出管是处于正压状态。故满管压力流雨水排水系统应选抗负压性能的管材。
5.3 小区雨水
5.3.1 地表排水应具备详细的地质勘察资料:小区滞水层分布、土壤种类和相应的渗透系数、地下水动态等。给排水专业要向建筑(总图)、景观园林等专业提出技术要求,并加强协调配合。
5.3.2 小区改造按照雨水控制及利用要求进行改造,排水管道的雨水排水口设在设施的终端形成溢流出口。
5.3.4 线性排水沟的设置应根据设置场所的汇水雨水量、地面铺设材料、荷载等因素选用成品线性排水沟的型号和规格尺寸。渗水沟的设计应符合现行国家标准《建筑与小区雨水控制及利用工程技术规范》GB 50400的规定。
5.3.6 寒冷地区,冬季下雪,埋地雨水管道为空管,只有在冬春转换季节气温在0℃以上时才会出现融雪水,此时节结冻土也逐渐消融解冻,不存在雨水管道结冻损害或塞流。当雨水管道埋设在冰冻层内时,应注意采用耐冻的管材及连接方式。
5.3.7 小区雨水管道由于管径不大,为便于计算均以管顶平接,小区雨水管排入天然水体宜采用水面平接。雨水管道向河道排水时,应有主管部门的认可。
5.3.8 建筑小区埋地雨水管道,由塑料排水管替代混凝土管。埋地塑料管中有内径系列和外径系列之分。检查井之间最大间距系摘自现行国家标准《室外排水设计规范》GB 50014的有关条文。
5.3.11 降雨历时计算公式摘自现行国家标准《室外排水设计规范》GB 50014。
5.3.12 本条规定根据市政雨水管渠设计重现期普遍提高,而对小区、车站、码头和机场的基地雨水管渠设计重现期作相应调整。大城市的小区或重要基地则取上限值,城市中心城区的小区或重要基地则取上限值。下沉式广场设计重现期应由广场的构造、重要程度、短期积水即能引起较严重后果等因素确定。
5.3.15 由于超高层建筑屋面并不大,但墙面面积大,降雨受风力影响在迎风墙面形成水幕流,必须在超高层建筑周围设置排水沟接纳这部分雨水。在小区雨水管道计算时可以不计入超高层外墙面面积。
5.3.19 集水池有效容积计算给出了满足最大一台排水泵30s的出水量要求,这是最小值,下沉式广场汇水面积大小不一,重要程度不同,设计重现期要求不同,其排水量会不同。当下沉式广场汇水面积大,设计重现期高,排水量大时,集水池的有效容积计算宜取最大一台排水泵出水量的小值;当下沉式广场汇水面积小,设计重现期低,排水量小时,集水池的有效容积计算可取最大一台排水泵出水量的大值;当下沉式广场与地铁、建筑物的出入口相连接时,集水池有效容积宜按最大一台排水泵5min的出水量计算,并可配置一台小泵,用于小水量时排水。
排水泵需要不间断动力供应,可以采用双电源或双回路供电。
5.3.20~5.3.22 这三条是针对近年来城市暴雨灾害频发,造成人民生命财产重大损失而做出的规定。城市排水基础工程建设滞后,管渠泄洪能力设计偏小而导致严重积水。现行国家标准《室外排水设计规范》GB 50014明确规定:小区开发基地的规划控制综合径流系数控制在0.7,进行源头控制,综合径流系数大于0.7时,要采取雨水调蓄等措施。而小区中雨水利用设施、景观水池、绿化和雨水泵站等计划建造设施的调蓄雨水量的潜力应充分发挥。如经核算综合径流系数仍大于0.7时,就要考虑建造下凹式绿地,设置植草沟、渗透池等,人行道、停车场、广场和小区道路等可采用渗透性路面,促进雨水下渗。在上述降低综合径流系数的措施无条件实施时,才应建造雨水调蓄池。以削减雨水洪峰为目的的调蓄池的有效容积,可按现行国家标准《建筑与小区雨水控制及利用工程技术规范》GB 50400和《城镇雨水调蓄工程技术规范》GB 51174的相关规定计算确定。
6 热水及饮水供应
6.2 用水定额、水温和水质
6.2.1 我国是一个缺水的国家,尤其是北方地区严重缺水,因此在考虑人民生活水平提高的同时,在满足基本使用要求的前提下,本标准热水用水定额编制中体现了“节水”这个重大原则。由于热水用水定额的取值范围较大,可以根据地区水资源情况,酌情选值,一般缺水地区应选定额的低值。表6.2.1-1与给水部分相对应增补了平均日热水用水定额。此定额值系参照现行国家标准《民用建筑节水设计标准》GB 50555-2010中的热水平均日节水用水定额编制,专供太阳能热水系统和节水用水量计算。
在表6.2.1-2的注中增加了学生宿舍等建筑淋浴间采用IC卡计费用水时的热水用水定额修正值。该值系参照一些大学的实测数据而编写的。
6.2.4 本条系根据现行国家标准《城镇给水排水技术规范》GB 50788-2012第3.7.2条“建筑热水供应应保证用水终端的水质符合现行国家生活饮用水水质标准的要求”而编制,其中集中热水供应系统包括集中集热、集中供热太阳能热水系统、直接太阳能热水系统和热泵集中热水供应系统,条文编制依据如下:国内有关科研设计单位对14个包含住宅小区、高级宾馆、医院及高校的采样点进行样品采集检测的结果显示,有85.71%的热水系统末端出水水温低于45℃,同时调查结果显示,热水系统中的细菌总数和异养菌高于现行国家标准《生活饮用水卫生标准》GB 5749规定的指标。灭致病菌的设施有:①紫外光催化二氧化钛(AOT)消毒装置;②银离子消毒器。灭致病菌的措施有:系统内热水定期升温灭菌。
6.2.6 热水供水水温涉及供水安全、卫生、节能、设备管道使用寿命等诸多因素,本条第2款与本标准第6.2.4条相对应,当系统设有效灭菌设施时,水加热设备出水温度宜比不设有效灭菌消毒设施时低5℃,有利于降低系统热损失能耗,用水安全和缓蚀阻垢,延长系统使用寿命。
6.3 热水供应系统选择
6.3.1 本条第1款对集中热水供应系统的热源首先利用余热、废热、地热,并规定了“稳定、可靠”的前提条件。因为生活热水要求每天稳定供应,如果余热、废热热源不稳定、不可靠,势必要做两套水加热系统,不经济,系统控制、运行管理复杂,很难达到应有的节能效果。
地热在我国分布较广,是一项极有价值的资源,有条件时应优先考虑。但地热水按其生成条件不同,其水温、水质、水量和水压有很大区别,应采取相应的技术措施进行处理:
(1)当地热水的水质不符合生活热水原水质要求时应进行水质处理;
(2)当水质对钢材有腐蚀时,水泵、管道和贮永装置等应采用耐腐蚀材料或采取防腐措施;
(3)当水量不能满足设计秒流量相应的耗热量要求时,应采用贮存调节设施;
(4)当地热水不能满足用水点水压要求时,应采用水泵将地热水抽吸提升或加压输送至各用水点。
地热水的热质应充分利用,有条件时应考虑综合利用,如先将地热水用于发电再用于采暖空调,或先用于理疗和生活用水再做养殖业和农田灌溉等。
太阳能日照时数、年太阳辐射量参数摘自国家标准《民用建筑太阳能热水系统应用技术规范》GB 50364-2005中第三等级的“资源一般”区域。
选用水源、空气源为热源时,应注意其适用条件及配备质量可靠的热泵机组。
热力管网和区域性锅炉房适宜新规划区供热。
燃油、燃气常压热水锅炉(又称燃油燃气热水机组)替代燃煤锅炉,能降低烟尘对大气的污染,改善司炉工的操作环境,提高设备效率。
用电能制备生活热水,除个别电力供应充沛的地方用于集中生活热水系统的热水制备外,一般用作分散集热、分散供热太阳能等热水供应系统的辅助能源。
6.3.5 蒸汽直接通入水中的加热方式,会产生较大的噪声,采用消声混合器等措施降低加热时的噪声,能将噪声控制在允许范围内。
采用汽-水混合设备的加热方式,将管网供给的蒸汽与冷水混合直接供给生活热水,较好地解决了系统回收凝结水的难题,但采用这种水加热方式,必须保证稳定的蒸汽压力和供水压力,保证安全可靠的温度控制,否则,应在其后加贮热设施,以保证安全供水。
另外,蒸汽直接通入水中时,开口的蒸汽管直接插在水中,在加热时,蒸汽压力大于开式加热水箱的水头;在不加热时,蒸汽管内压力骤降,为防止加热水箱内的水倒流至蒸汽管,应采取防止热水倒流的措施,如提高蒸汽管标高、设置止回装置等。
6.3.6 本条是对热水系统选择的规定。
1 使用方,即业主或建设方有设集中热水供应系统的要求,主要是针对居住小区;使用方无此要求时,宜按本条第3款、第4款处理。宾馆、公寓、医院、养老院等建筑一般对舒适和安全使用热水的要求较高,且管理容易到位,因此此类建筑推荐采用全日集中热水供应系统。
2 本款对小区设集中热水供应系统的规模作了限制,主要是从减少管道热损失、节能要求考虑。据广州亚运城的太阳能-热泵热水系统的外网计算,当室外热水管道管长L≈1000m时,其每日的外管网热损失与整个系统的集取太阳能的有效热量相等。可见室外管道太长的集中热水供应系统的热循环能耗是设计这种系统不可忽视的问题。
3 本款对普通住宅等建筑作了宜采用局部热水供应系统的规定,其理由是:①对于普通住宅,一般只在晚上洗浴使用热水,厨房可采用小型快速电热水器供给热水,如设集中热水供应系统,则一次投资大、能耗大、维修管理工作量大。②对于无集中沐浴设施的办公楼,一般只有洗手用热水,其用量少,时间短,如用干、立管循环的集中热水供应系统,用水时很可能洗完手热水还未到位,或放掉部分冷水才出热水,这样又耗能又费水,使用也不方便。对这种建筑如需供热水时,可采用就地安装小型快速电热水器供应热水。③对于日用热水量(按60℃计)小于5m3且用水点分散的建筑,因设集中热水供应系统,相应热损失占比更大,因此也宜采用局部热水供应系统。
4 对于普通住宅等用热水标准不高的建筑,如果使用方要求设置集中热水供应系统时,宜采用定时系统,以减少能耗。
5 本款规定,在全日集中热水供应系统中的公共浴室、洗衣房、厨房等用热量较大且用水时段固定的用水部位宜设与系统循环管道分开的单独热水管网,定时循环供热水。另外,洗衣房要求热水水质硬度较低,厨房要求热水温度高,这些用水部位也可另设局部热水供应系统。这样可以大大减少系统的能耗,并有利于系统供水的稳定。
6.3.7 本条对集中热水供应系统的分区、供水压力等做了原则性规定。
1 要求应与给水系统的分区一致。
1)因为生活热水主要用于盥洗、淋浴,而这二者均是通过冷、热水混合后调到所需使用温度。因此,热水供水系统应与冷水系统竖向分区一致,保证系统内冷、热水的压力平衡,达到节水、节能、用水舒适的目的。
2)高层、多层建筑设集中热水供应系统时应分区设水加热器,其进水均应由相应分区的给水系统设专管供应,以保证热水系统压力的相对稳定。确有困难时,如有的单幢高层、多层住宅的集中热水供应系统,只能采用一个或一组水加热器供整幢楼热水时,应在满足本标准第3.4.3条分区供水压力的范围内,采用质量可靠的减压阀等管道附件来解决系统冷热水压力平衡的问题。
3)对于采用集热、贮热水箱经热水加压泵供水的热水供应系统(较大型的太阳能、热泵热水系统大都采用这种系统),因其冷热水供水系统分设,为了满足用水点处冷热水压力的平衡,热水加压泵的扬程应按给水系统在其相同位置的压力值选择,如有困难也应通过设置减压阀等措施予以保证。
2 因倒流防止器在系统为设计流量时的最小阻力也有2m~4m,因此对于由城镇给水管直接补水经水加热设备供热水的系统,其相应的给水系统也宜经倒流防止器后引出,以保证该系统的冷热水压力平衡。
3 本款规定开式热水供应系统即带高位热水箱的供水系统。系统的水压由高位热水箱的水位决定,不受市政给水管网压力变化及水加热设备阻力变化等的影响,可保证系统水压的相对稳定和供水安全可靠。
4 本款对热水配水点处冷、热水水压平稳作出了规定。工程实际中,由于冷水热水管径不一致,管长不同,尤其是当用高位冷水箱通过设在地下室的水加热器再返上供给高区热水时,热水管路要比冷水管长得多,这样相应的阻力损失也就要比冷水管大。另外,热水还需附加通过水加热设备的阻力。因此,要做到冷水热水在同一点压力相同是不可能的,只能达到冷热水水压相近。
“相近”绝不意味着降低要求。因为供水系统内水压的不稳定,将使冷热水混合器或混合龙头的出水温度波动很大,不仅浪费水,使用不方便,有时还会造成烫伤事故。从国内一些工程实践看,本条中“相近”的含义一般以冷热水供水压差小于或等于0.01MPa为宜。在集中热水供应系统的设计中要特别注意两点:一是热水供水管的阻力损失要与冷水供水管的阻力损失平衡;二是水加热设备的阻力损失宜小于或等于0.01MPa。
5 本款是为了保证公共浴室中淋浴器的水温水压稳定而作出的规定。
1)此项规定推荐采用开式热水供应系统,水压稳定,不受给水管网水压变化影响;便于调节冷热水混合装置的出水温度,避免水压高,造成淋浴器实际出水量大于设计水量,既浪费水量,又造成贮热水罐容积不够用而影响使用。
2)此项规定是为了避免因浴盆、浴池、洗涤池等用水量大的卫生器具间断使用时,引起淋浴器管网的压力变化过大,以致造成淋浴器出水温度不稳定。
3)此项规定是为了在较多的淋浴器之间启闭阀门变化时减少相互影响,要求配水管布置成环状。
4)此项规定是为了使淋浴器在使用调节时不致造成管道内水头有明显的变化,影响淋浴器的使用。
5)此项规定主要是为了从根本上解决淋浴器出水温度忽高忽低难于调节的问题,达到方便使用、节约用水的目的。由于单管热水供应系统出水温度不能随使用者的习惯自行调节,故不宜用于淋浴时间较长的公共浴室。而对于工业企业生活间的淋浴室,由于工作人员下班后淋浴的目的是冲洗汗水、灰尘,淋浴时间较短,采用这种单管供水方式较适宜。对于桑拿间、健身房等公共浴室,一般使用者对水温要求差别大,用水时间较分散,宜采用带定温混合阀的双管热水供应系统,它比单管系统使用灵活、舒适。
6.3.8 本条规定了水加热设备机房的设置要点,以利于减少管道,经济、节能和冷热水压力的平衡。
6.3.9 本条为强制性条文,必须严格执行。老年人照料设施(包括老年人全日照料设施和老年人日间照料设施)、安定医院、幼儿园等均以弱势群体为主体的建筑,沐浴者自行调节控制冷热水混合水温的能力差,为保证沐浴者不被热水烫伤,热水供应系统应采取防烫伤措施。监狱的热水供应亦需采取此措施是为了防止犯人自残、自杀。
6.3.10 本条对采用干管和立管循环的集中供应系统的建筑做出规定。
1 本款系根据现行国家标准《民用建筑节水设计标准》GB 50555的相应条文编制,其中热水配水点水温系指单开热水龙头时的出水温度。
3 本款集中热水供应系统中对使用水温要求不高的非淋浴用水点指洗手盆、厨房洗涤池等。
6.3.13 本条第2款设分户水表计量的居住建筑,包括住宅、别墅及酒店式公寓不宜设支管循环,其理由:一是支管进、出口要分设水表,容易产生计量误差,并引起计费纠纷;二是循环管道及阀件太多难以维护管理,循环效果难以保证;三是住宅相对公建,易采取节水措施;四是能耗大;五是当支管敷设在垫层时,施工安装困难。另外,经设支管电伴热的工程测算:采用支管自调控电伴热与采用支管循环比较,虽然前者一次投资大,但节能效果显著,如居住建筑的支管采用定时自调控电伴热,每天伴热按6h计比支管循环节能约70%,运行2年~3年节能节省的能源费可抵消增加的一次性投资费用,并且还基本解决了以上支管循环的各种问题,但采用支管自调控电伴热,支管宜走吊顶,如敷设在垫层时,垫层需增加厚度。
6.3.14 本条对热水循环系统做出规定。
1、2 这两款对如何保证小区和单栋建筑内的热水循环系统的循环效果作了具体规定。依据是“集中热水供应系统循环效果的保证措施-热水循环系统的测试与研究”课题,通过对温控循环阀、流量平衡阀、导流三通、大阻力短管在多种热水循环系统工况下的测试研究成果。
3 本款对减压阀在热水循环系统的应用提出了要求。当减压阀用于热水系统分区时,除满足本标准第3.5.10条、第3.5.11条要求之外,其密封部分材质应按热水温度要求选择,尤其要注意保证各区热水的循环效果。图5为减压阀安装在热水系统的三个不同图示。
图5 减压阀设置
图5(a)为高低两区共用一加热供热系统,是一错误系统图示,因分区减压阀设在低区的热水供水立管上,这样高低区热水回水汇合至图中“A”点时,由于低区系统经过了减压其压力将低于高区,即低区管网中的热水就循环不了。
图5(b)为高低区分设水加热器的系统,两区水加热器均由高区冷水高位水箱供水,低区热水供水系统的减压阀设在低区水加热器的冷水供水管上。这种系统布置与减压阀设置形式是比较合适的。
图5(c)为高低区共用一集中热水供应系统,减压阀均设在分户支管上,不影响立管和干管的循环。与图5(a)、图5(b)相比,其优点是系统不需要另外采取措施就能保证循环系统正常工作。缺点是低区一家一户均需设减压阀,减压阀数量多,要求质量可靠。此系统应控制最低用水点处支管减压阀前的静压小于0.55MPa。
5 本款规定设有3个或3个以上卫生间的住宅、酒店式公寓、别墅因热水管道长,需设循环管道,机械循环或自然循环,也可采取热水供水管设自调控(定时)电伴热措施,其适用范围:①卫生间非竖向同位置布置者可用带智能控制的小热水循环泵机械循环;②卫生间竖向同位置布置者可采用专用回水配件自然循环;③室内热水管道采用非埋垫层敷设时,可采用自调控定时电伴热措施。
6.4 耗热量、热水量和加热设备供热量的计算
6.4.1 本条中Kh的计算示例:
某医院设公用盥洗室、淋浴室采用全日集中热水供应系统,设有病床800张,60℃热水用水定额取110L/(床·d),试计算热水系统的Kh值。
计算步骤:
(1)查表6.4.1,医院的Kh=3.63~2.56;
(2)按800床位和110L/(床·d)的乘积作为变量采用内插法计算系统的Kh值:
6.4.3 本条对热源设备、水加热设备的小时供热量作了原则性规定。
1 本款删除了传统的容积式水加热器,其理由详见本标准第6.5.10条的条文说明。
2 本款对水加热设备的供热量(间接加热时所需热媒的供热量)作了如下具体规定:
(1)导流型容积式水加热器或贮热容积相当的水加热器、燃油(气)热水机组的供热量按式6.4.3-1计算。该式是参照《美国1989年管道工程资料手册》、《Aspe DataBook》的相关公式改写而成的。
原公式为:
式中:Qt——可提供的热水流量(L/s);
R——水加热器加热的流量(L/s);
M——可以使用的热水占罐体容积之比;
St——总贮水容积(L);
d——高峰用水持续时间(h)。
对照美国公式,式(6.4.3-1)中的Qg、Qh、T1分别相当于美国公式的R、Qt和d,而η、Vr则相当于美国公式的M、St。但美国公式是热水量平衡,忽略了水温的因素,式(6.4.3-1)为热量平衡更为准确。
在式(6.4.3-1)中,带有相当量贮热容积的水加热设备供热时,提供系统的设计小时耗热量由两部分组成:一部分是设计小时耗热量时间段内热媒的供热量Qg;另一部分是供给设计小时耗热量前水加热设备内已贮存好的热量。即式(6.4.3-1)的后半部分:
采用这个公式比较合理地解决了热媒供热量,即热源设备容量与水加热贮热设备之间的搭配关系。即前者大后者可小,或前者小后者可大。避免了以往设计中不管水加热设备的贮热容积多大,热源设备均按设计小时耗热量来选择,从而引起热源设备和水加热设备两者均偏大,利用率低,不合理不经济的现象。但当Qg计算值小于平均小时耗热量时,Qg应按平均小时耗热量取值。
(2)半容积式水加热器或贮热容积相当的水加热器、热水机组的供热量按设计小时耗热量计算。由于半容积式水加热器的贮热容积只有导流型容积式水加热器的1/2~1/3,甚至更小些,主要起调节稳定温度的作用,防止设备出水时冷时热。在调节供热量方面,只能调节设计小时耗热量与设计秒流量耗热量之间的差值,即保证在2min~5min高峰秒流量时不断热水。而这部分贮热水容积对于设计小时耗热量本身的调节作用很小,可以忽略不计。因此,半容积式水加热器的热媒供热量或贮热容积与其相当的热水机组的供热量即按设计小时耗热量计算。由于半容积式水加热器具有无冷温水区保证热水水质的优点,其贮热容积部分可根据使用要求加大,此时相应的Qg也可按式(6.4.3-1)计算。
(3)半即热式、快速式水加热器的供热量按设计秒流量的耗热量计算。半即热式等水加热设备的贮热容积一般不足2min的设计小时耗热量所需的贮热容积,对进入设备内的被加热水的温度与热量基本上起不到调节平衡作用。因此,其供热量应按设计秒流量所需的耗热量供给。当半即热式、快速式水加热器配贮热水罐(箱)供热水时,其设计小时供热量可按导流型容积式或半容积式水加热器的设计小时供热量计算。
6.5 水的加热和贮存
6.5.1 本条对水加热设备提出三点基本要求:
1 本款是对水加热设备的主要性能——热工性能提出一个总的要求。作为一个水加热换热设备,其首要条件当然应该是热效率高,换热效果好,节能。具体来说,对于热水机组其燃烧效率一般应在85%以上,烟气出口温度应小于200℃,烟气黑度等应满足消烟除尘的有关要求。对于间接加热的水加热器在保证被加热水温度及设计流量工况下,当汽-水换热,在饱和蒸汽压力为0.2MPa~0.6MPa时,凝结水出水温度为50℃~70℃的条件下,传热系数K=5400kJ/(m2·℃·h)~10800kJ/(m2·℃·h);当水-水换热时,且热媒为80℃~95℃的热水时,热媒温降约为20℃~30℃,传热系数K=2160kJ/(m2·℃·h)~4320kJ/(m2·℃·h)。
另外,提出水加热设备还必须体型小,节省设备用房。
2 本款规定生活热水侧阻力损失小。生活热水大部分用于沐浴与盥洗,而沐浴与盥洗都是通过冷热水混合器或混合龙头来实施的。其冷、热水压力需平衡、稳定的问题已在本标准第6.3.7条的条文说明中作了详细说明。以往有不少工程因采用不合适的水加热设备出现过系统冷热水压力波动大的问题,耗水耗能使用不舒适;个别工程出现了顶层热水上不去的问题。因此,建议水加热设备热水侧的阻力损失宜小于或等于0.01MPa。
3 本款对水加热器的安全检修作了规定。水加热设备的安全可靠性能包括两方面的内容,一是设备本身的安全,如不能承压的热水机组,承压后就成了锅炉;间接加热设备应按压力容器设计和加工,并有相应的安全装置。二是被加热水的温度必须得到有效可靠的控制,否则容易发生烫伤的事故。
构造简单、操作维修方便、生活热水侧阻力损失小是生活用热水加热设备区别其他型式的换热设备的主要特点。
因为生活热水的源水一般是不经处理的自来水,具有一定硬度,近年来虽有各种物理、化学简易阻垢处理方法,但均不能保证其真正的使用效果。体量大的水加热设备安装就位后,很难有检修的余地,更有甚者,有的水加热设备的换热盘管根本无法拆卸更换,设备不留检修人孔这些都将给使用者带来极大的麻烦,因此,本款特提出此要求。
6.5.2 本条对水加热设备的选用作了规定。
1 燃油(气)热水机组除应满足本标准第6.5.1条的要求之外,还应具备燃料燃烧完全、消烟除尘、机组水套通大气、自动控制水温、火焰传感、自动报警等功能,机组还应设防爆装置。
2 以蒸汽、高温水为热媒时,可按下列原则选择水加热器:①热媒供应能力小于设计小时耗热量时,选用导流型容积式水加热器或加大贮热容积的半容积式水加热器;②热媒供应能力大于或等于设计小时供热量时,选用半容积式水加热器;③热媒供应能力大于或等于设计秒流量所需耗热量且系统对冷热水压力平衡稳定要求不高时选用半即热式水加热器。
3 本款规定了采用电作热源的水加热设备应该设阴极保护等防止结垢的措施保护电热元件。理由是电热元件工作时温度很高,极易将水中钙、镁离子吸附环绕,既降低了电热效率,又易烧坏。采取阴极保护措施后能大大延长电热元件的使用寿命。
6.5.3 本条规定医院的热水供应系统热源机组及水加热设备不得少于2台,当一台检修时,其余各台的总供应能力不得小于设计小时耗热量的60%。
由于医院手术室、产房、器械洗涤等部门要求经常有热水供应,不能有意外的中断,否则有可能造成医疗事故。因此,医院集中热水供应系统的热源机组及水加热设备不得少于2台,以保证一台设备检修或故障时,还有一台继续运行,不中断热水供应。
6.5.4 医院建筑不得采用有冷温水滞水区的水加热设备,因为医院是各种致病细菌滋生繁殖最适宜的地方,带有冷温水滞水区的水加热器,其滞水区的水温一般在20℃~30℃之间,是细菌繁殖生长最适宜的环境,国外早已有从这种带滞水区的容积式水加热器中发现致人体生命危险的军团菌的报道。因此,医院等病菌滋生繁殖较严重的地方,不得采用带冷温水滞水区的水加热器。国内近十多年来研发成功的半容积水加热器,运行时无冷温水滞水区是医院等建筑集中热水系统的合理选用设备。
6.5.5 本条对局部热水供应设备作了规定。
1 本款为选择局部加热设备的总原则。首先要因地制宜按太阳能、燃气、电能等热源来选择局部加热设备,另外还要结合建筑物的性质、使用对象、操作管理条件、安装位置、采用燃气与电热水器时的安全装置等因素综合考虑。
2 需同时供给2个及2个以上卫生器具或设备热水时,宜选用带贮热容积的加热设备;选用电热水器时应带贮热容积以减少热源的瞬时负荷。如果完全按即热即用没有贮热容积调节选用设备时,则供一个q=0.15L/s的标准淋浴器当冷水温度为10℃时的电热水器连续使用时其功率约为18kW,显然,作为局部热水器供多个器具同时用,没有调贮容积是很不合适的。
6.5.6 本条为强制性条文,必须严格执行。特别强调采用燃气热水器和电热水器的安全问题。国内发生过多起燃气热水器漏气中毒致人身亡的事故,因此,选用这些局部加热设备时一定要按其产品标准,相关的安全技术通则,安装及验收规程等中的有关要求进行设计。住宅的燃气热水器应设置在厨房或厨房相连的阳台内。
6.5.7 本条规定水加热器的加热面积的计算公式,该公式是计算水加热器的加热面积的通用公式。
式(6.5.7)中ε是考虑由于水垢等因素影响传热系数K值的附加系数。从调查资料看,水加热器结垢现象比较严重,在无简单、行之有效的水处理方法的情况下,加热管束要避免水垢的产生是很困难的,结垢的多少取决于水质及运行情况。由于水垢的导热性能很差[水垢的导热系数为2.2kJ/(m2·℃·h)~9.3kJ/(m2·℃·h)],因而水加热器往往受水垢的影响导致其传热效率的降低。因此,在计算水加热器的传热系数时应附加一个系数。
ε取值为0.6~0.8是引用国外的资料。
6.5.8 本条规定了热媒与被加热水的计算温度差的计算公式。
1 导流型容积式水加热器、半容积式水加热器的计算温度差是采用算术平均温度差计算的。因导流型容积式水加热器和半容积式水加热器中的水温是逐渐、均匀地升高,即加热盘管设置在加热器的底部,冷水自下部受热上升,经传导、对流循环使水加热器内的水全部加热,同时这两种水加热器均有一定的调节容积,计算温度差粗略一点影响不大。
2 快速式水加热器、半即热式水加热器的计算温度差是采用平均对数温度差的计算公式。因快速式水加热器主要是靠对流换热,换热时水在加热器内是不停留的、无调节容积,因此,加热器的计算温差应较精确计算。
对快速水加热器计算式(6.5.8-2)的说明:快速水加热器有逆流式和顺流式两种换热工况,前者比后者换热效果好,因此生活热水采用的快速水加热器或半即热式水加热器基本上均采用如图6所示的逆流式换热。
式(6.5.8-2)中的△tmax(热媒与被加热水在水加热器一端的最大温度差)与△tmin(热媒与被加热水在水加热器另一端的最小温度差)如图6所示。
图6 快速水加热器水加热工况示意
当采用低温热媒水换热时,有可能式(6.5.8-2)中的△tmax≈△tmin,此时△tj≈0,即Fjr为无限大,显然不合理,可按式(6.5.8-1)计算△tj,最终计算的Fjr值才能基本满足要求。
6.5.9 本条规定了热媒的计算温度。热媒的初温和终温是决定水加热器加热面积大小的主要因素之一,从热工理论上讲,饱和蒸汽温度随蒸汽压力不同而相应改变。
当蒸汽压力(相对压力)小于或等于70kPa时,蒸汽压力和蒸汽温度变化情况见表6。
表6 蒸汽压力和蒸汽温度变化表
[蒸汽压力(相对压力)≤70kPa时]
当蒸汽压力大于70kPa时,蒸汽压力(相对压力)和蒸汽温度变化情况见表7。
表7 蒸汽压力和蒸汽温度变化表
[蒸汽压力(相对压力)>70kPa时]
从以上数据可知,当蒸汽压力小于70kPa时,其温度变化差值不大,而且在实际应用时,为了克服系统阻力将蒸汽送至用汽点并保证一定的压力,一般蒸汽压力都要保持在30kPa~40kPa,这时的温度为106.56℃和108.74℃,与100℃的差值仅为6℃~8℃,对水加热器的影响不大。为了简化计算,统一按100℃计算。
当蒸汽压力大于70kPa时,蒸汽温度应按饱和蒸汽温度计算,因高压蒸汽热焓值高,若也取100℃为计算蒸汽温度,则计算加热面积偏大造成浪费。
当热媒为热力管网的热水,应按热力管网供、回水的最低温度计算的规定,是考虑最不利的情况,如北京市的热力网的供水温度冬季为70℃~130℃;夏季为40℃~70℃。
本条对热媒初温、终温的计算作出了较具体的规定。本条中推荐的热媒为饱和蒸汽与热水时的热媒初温、终温的参数,来源于RV系列导流型容积式水加热器、HRV系列半容积式水加热器、SW和WW系列浮动盘管半即热式水加热器等产品经热工性能测定的实测数据,可在设计计算中采用。
6.5.10 水加热设备设置贮存调节容积是为了保证系统达到设计小时流量与设计秒流量用水时均能平稳供给所需温度的热水。即系统的设计小时流量与设计秒流量是由热媒在这段时间内加热的热水量与贮热容器已贮存的热水量两者联合供给的。不同结构型式和加热工艺的水加热设备,其有效贮热容积部分大致可以分为下列两种情况:
(1)U型管式导流型容积式水加热器(如图7所示),在U型盘管外有一组导流装置,初始加热时,冷水进入水加热器的导流筒内被加热成热水上升,继而迫使水加热器上部的冷水返下形成自然循环,逐渐将水加热器内的水加热。随着升温时间的延续,当水加热器上部充满所需温度的热水时,自然循环即终止。此时,位于U型管下部的水虽然经循环已被加热,但达不到所需要的温度,按热量计算,容器的有效贮热容积约为80%~90%。
图7 导流装置的容积式水加热器工作原理示意图
(2)半容积式水加热器实质上是一个经改进的快速式水加热器插入一个贮热容器内组成的设备。它与容积式水加热器构造上最大的区别就是:前者的加热与贮热两部分是完全分开的,而后者的加热与贮热连在一起。半容积式水加热器的工作过程是:水加热器加热好的水经连通管输送至贮热容器底部,贮热容器内贮存的全是高于系统回水温度的热水,计算水加热器容积时不需要考虑附加容积。没有冷温滞水区能有效保证热水水质,这是半容积式水加热器的核心点,经调查国内有的名为“半容积式水加热器”的产品达不到此要求。因此设计应经调研选用。
浮动盘管为换热元件的立式导流型容积式水加热器的盘管靠底布置时,有效贮热容积约为90%~95%。
6.5.11 本条规定了水加热设施的贮热量。
1 水加热设施的贮热量,理应根据日热水用水量小时变化曲线设计计算确定。由于目前很难取得这种曲线,所以设计计算时应根据热源品种,热源充沛程度、水加热设备的加热能力,以及用水均匀性、管理情况等因素综合考虑确定。
2 本标准表6.5.11划分为以蒸汽和95℃以上的热水为热媒及以小于或等于95℃热水为热媒两种换热工况,分别计算贮热量。
(1)汽-水换热的效果要比水-水换热效果优越得多,相同换热面积的条件下,其换热量前者可为后者的3倍~9倍。当热媒水温度高时与汽-水换热差距小一点,当热媒水温度低时(如有的热网水夏天供70℃左右的水),则与汽-水换热差距大于10倍。在这种热媒条件差的条件下,本标准表6.5.11中导流型容积式水加热器、半容积式水加热器的贮热量值已为最低值。
(2)从传统型容积式水加热器的升温时间及国内导流型容积式水加热器、半容积式水加热器实测升温时间来看(见表8),本标准表6.5.11中“小于或等于95℃”热水为热媒时贮热量参数是合理的。
表8 水加热器升温时间
此外,从表8可看出,传统的容积式水加热器(采用两行程U形管为换热元件的容积式水加热器)的换热能力远低于其他三种设备,由于它传热效果差,耗能、耗材、占地大,因此此次本标准全面修编时将其删除。
3 本款为非传统热源(太阳能、水源热泵、空气源热泵)热水供应系统的贮热量计算方法。
6.5.14 该条对热水箱配件的设置作了规定。热水箱加盖板是防止空气中的尘土、杂物污染水体,并避免热气四溢。泄水管是为了在清洗、检修时泄空,将通气管引至室外是避免热气溢在室内。
6.5.15 水加热设备、贮热设备贮存有一定温度的热水,水中溶解氧析出较多,当其采用钢板制作时,氧腐蚀比较严重,易恶化水质和污染卫生器具。这种情况在我国以水质较软的地面水为水源的南方地区更为突出。因此,水加热设备和贮热设备宜根据水质条件采用耐腐蚀材料(如不锈钢、铁素体不锈钢、不锈钢复合板)等制作或衬不锈钢、铜等防腐面层。当水中氯离子含量较高时宜采用钢板衬铜,或采用316L不锈钢、444铁素体不锈钢。衬面层时应注意两点,一是面层材质应符合现行有关卫生标准的要求,二是衬面层工艺必须符合相关规定,保证面层与母体结合密实牢固。
6.5.19 本条对膨胀管的设置作了具体规定。
设有高位冷水箱供水的热水系统设膨胀管时,不得将膨胀管返至高位冷水箱上空,目的是防止热水系统中的水体超温膨胀时,将膨胀的水量返至生活用冷水箱,引起该水箱内水体的热污染。解决的办法是将膨胀管引至其他非生活饮用水箱的上空。因一般多层、高层建筑大多有消防专用高位水箱,有的还有中水水箱等,这些非生活饮用水箱的上空都可接纳膨胀管的泄水。
为防止热水箱的水因受热膨胀而流失,规定热水箱溢流水位超出冷水补给水箱的水位高度h1应按式(6.5.19)计算,其设置如图8所示。
图8 热水箱与冷水补给水箱布置
6.5.20 本条为强制性条文,必须严格执行。膨胀管上严禁设置阀门是确保热水供应系统的安全措施。
6.5.21 本条式(6.5.21)中水加热器属于压力容器,它的各部件均是按压力容器的设计压力来设计计算的,其设计压力等级为0.6MPa、1.0MPa、1.6MPa、2.5MPa。按式(6.5.21)计算Ve时,P2值应小于水加热器的设计压力,如P2=0.60MPa时应选设计压力为1.0MPa的水加热器。
Vs指系统内热水总容积包括水加热设备的贮热水容积。
6.6 太阳能、热泵热水供应系统
6.6.1 本条编制的总原则为:太阳能热水系统应适用,规模宜小。
旅馆、医院等公建因使用要求较高,且管理水平较好宜采用集中集热、集中供热太阳能热水系统。而普通住宅因存在管理困难,收费矛盾等众多难题宜采用集中集热、分散供热太阳能热水系统或分散集热、分散供热太阳能热水系统。
根据奥运村、亚运城等国内大、中型集中太阳能热水系统的设计、运行经验,采用闭式太阳能集热系统、系统承压高温运行是引起系统爆管、集热失效、气堵低效、运行能耗大、故障多的原因。
5 本款新增了“开式太阳能热水系统宜采用集热、贮热、换热一体间接预热承压冷水供应热水的组合系统”的规定。这是国内有关科研设计企业经过多年的科研、设计、研发的一种新系统,其核心部件是集热、贮热、换热一体的贮筒式组合集热器,这种新型集热系统因不需采用机械循环而使系统大大简化,较好地解决了上述现有太阳能集热系统存在的问题。其系统图示如图9、图10所示,图9为不设循环系统的图式,图10为设干管和立管循环的图式。
图9 不设循环系统的集中集热分散供热太阳能热水系统示意图
1-集热、贮热、换热组合集热器;2-冷水管;3-恒温混合阀;4-灭菌消毒装置;5-水表;6-带温控的热水器
图10 带干管和立管循环的集中集热分散供热太阳能热水系统示意图
1-集热、贮热、换热组合集热器;2-冷水管;3-恒温混合阀;4-灭菌消毒装置;5-水表;6-带温控的热水器;7-循环水泵
6 本款规定了集中集热、分散供热太阳能热水系统,在满足条款规定的条件下,供热水管道部分可不设循环管道。理由是用户终端均设有带温控的热水器辅热供水,用水时先由热水器加热供水,由于太阳能热水箱(图9中组合集热器)至辅热设施连管短,随着供热水管中的冷水放尽后,太阳能热水立即补水。这样不浪费水,又节能,且系统大大简化,有利于解决目前住宅集中太阳能热水系统的设计、施工和使用存在的问题。当不满足以上条件时,宜按图10设干管和立管循环系统。
6.6.3 太阳能是一种低密度、不稳定、不可控的热源,其热水系统不能按常规热源热水系统设计。因此,太阳能热水系统尤其是集中太阳能热水系统的集热器总面积计算等参数的合理选择是整个系统是否节能、经济,是否能正常运行的重要因素。
平均日耗热量Qmd的计算公式中引入了常规热源热水系统不同或没有的参数,平均日热水用水定额qmr、同日使用率b1是反映实际用热水量的参数,因为在常规热源热水系统的设计计算时,往往是按满负荷即按设计用水人数计算,如住宅100户,每户3.5人,则设计用水人数为350人。而住宅实际入住率按相关统计资料得知b1≈0.7,实际用水人数只有245人,这样仅此一项,集热器总面积的计算就相差约30%。同理,冷水温度选用年平均值也是为了合理选用集热器总面积。尤其是以地表水为源水的冷水年平均温度与表6.2.5所列冷水计算温度相差较大,如南京市二者相差约15℃,相应计算所得的集热器总面积相差约26%。按上两例计算的集热器总面积即可少选约60%。
年平均冷水温度可向当地自来水公司查询,也可按相关设计手册中提供的水温月平均最高值和最低值的平均值计算,如当地无此参数时,可参照临近城市的参数取值。
太阳能保证率f取值表源于《民用建筑太阳能热水系统工程技术手册》。设计时可按表6.6.3-2及注选值。
集热器总面积补偿系数bj是考虑集热器布置偏离正南方向和安装角度偏离太阳光直射角度较大,即集热器得到的实际太阳光热能小于太阳能辐照量较大时,应增加集热器总面积。其具体计算参见现行国家标准《民用建筑太阳能热水系统应用技术规范》GB 50364或《民用建筑太阳能热水系统工程技术手册》。
集热器总面积的平均集热效率ηj,分散集热、分散供热系统因集热器只有单组或几组组成,连接简单,引起集热系统短路循环、气堵等运行故障概率少,因此其ηj可按单组集热器经正规实测并经计算确定,也可按条文的经验数据取值。集中集热系统因集热器多组串、并联布置,连接管路复杂,尤其是采用真空管集热器的闭式承压系统,存在短路循环、气堵、集热效率衰退等多种运行不利因素,因此ηj是很难用计算得出,只有通过参照已有的集中集热系统的实测数据选取。
条文中给出经验值30%~45%,源于北京奥运村、广州亚运城的集中集热、集中供热太阳能热水系统,其实测平均值分别为:ηj=0.40~0.48,ηj=0.32~0.36。
此外,式中Jt取年平均日太阳能辐照量,设计宜按当地7月(最热月)的月平均日太阳能辐照量、地表水冷水温度复核太阳能集热系统的热量,以防系统过热。
6.6.5 本条是集热系统附属设施的设计规定。
6 本款选用板式快速水加热器配集热水罐或导流型容积式水加热器、半容积式水加热器集热时可利用系统冷水压力,不需另加热水增压供水泵,且有利于系统冷热水压力平衡。但当系统较大时,设备占地大,一次投资大,宜采用板式快速水加热器配集热水箱集热。因此,提出以Aj≈500m2为界分别选取。
9 本款对集热系统选用管材,按开式系统、闭式系统分别作了规定。因开式系统不承压、集热温度小于或等于100℃。闭式系统根据工程实测,最高集热温度约为200℃,因此对其管材及附件等分别提出了耐温要求。
6.6.7 本条是热泵机组供热的规定。
1 本款计算水源热泵的设计小时供热量的式(6.6.7-1)中T5取8h~16h,设计时,可根据系统是否设置辅助热源来取值。不设辅助热源时,T5宜取8h~12h;设辅助热源的空气源热泵系统T5宜取16h,这样既可使无辅助热源系统通过延长热泵工作时间保证高峰日用水,又可使设辅助热源系统选择热泵机组经济合理。
3 本款系根据现有采用水源热泵制备生活热水的工程常用系统形式作出的规定,由于热泵制热的冷凝器的换热管束管径很小,如用直接加热供水系统,易受热水水质影响结垢腐蚀热泵效率衰减,使用寿命缩短,因此宜采用间接换热供水系统。另外,热泵热媒水温度一般小于或等于60℃,经一次换热很难交换出大于或等于50℃的热水,工程中一般采用板式水加热器配贮热水箱(罐)循环换热,获得大于或等于50℃的热水。
最冷月平均气温小于0℃的地区,空气源热泵冬季运行COP值一般低于1.5,达不到商用空气源热泵COP≥1.8的要求,使用不经济、不合理,故此类地区不推荐采用空气源热泵系统。
6.7 管网计算
6.7.1 设有集中热水供应系统的小区室外热水干管管径设计流量计算,与小区给水的水力计算一致。而单幢建筑物的引入管需保证其系统的设计秒流量,即引入管应按该建筑物热水供水系统总干管的设计秒流量计算选择管径。
6.7.5 循环流量一般应经计算确定。式(6.7.5)中Qs、△ts的取值范围可供设计参考,并宜控制qx=(0.1~0.15)qrh。
6.7.10 热水循环系统循环水泵的流量与系统所采取的保证循环效果的措施有密切关系。根据工程循环流量的计算,循环流量qx=(0.1~0.15)qrh,即qxh=(0.15~0.38)qrh,因此,设计中可参考下列参数选择qxh值。
(1)采用温控循环阀、流量平衡阀等具有自控和调节功能的阀件作循环元件时,qxh=0.15qrh。
(2)采用同程布管系统、设导流三通的异程布管系统,qxh=(0.20~0.25)qrh。
(3)采用大阻力短管的异程布管系统,qxh≥0.3qrh。
(4)供给两个或多个使用部门的单栋建筑集中热水供应系统、小区集中热水供应系统qxh的选值:
①各部门或单栋建筑热水子系统的回水分干管上设温控平衡阀、流量平衡阀时,相应子系统的qxhi=0.15qrhi,母系统总回水干管上的总循环泵qxh=∑qxhi。
②子系统的回水分于管上设分循环泵时,其水泵流量均按子系统的qxhi的最大值选用,各泵同一型号。总循环泵的qxh按母系统的qrh选择,即qxh=0.15qrh。
6.7.11 近年来,随着太阳能、热泵热水系统的推广应用,采用高、低位热水箱配热水供水泵供水的系统日益增多。为了规范这种系统热水供水泵、热水循环水泵的设计计算而规定了本条款。
1 本款规定宜二泵合一,只按供水泵设计计算流量和扬程即可。热水回水流量可按非秒流量时段的一个出流量考虑。
3 本款规定水泵台数配置宜大于或等于3台,以利于用水量小时段内,需启泵运行满足管网循环流量要求时低功率水泵能高效工作,节约能源。
6.8 管材、附件和管道敷设
6.8.2 本条对热水系统选用管材作了规定。根据国家有关部门关于“在城镇新建住宅中,禁止使用冷镀锌钢管用于室内给水管道,并根据当地实际情况逐步限制禁止使用热镀锌钢管,推广应用铝塑复合管、交联聚乙烯(PE-X)管、三型无规共聚聚丙烯(PP-R)管、耐热聚乙烯管(PERT)等新型管材,有条件的地方也可推广应用铜管”的规定,本条推荐作为热水管道的管材排列顺序为薄壁不锈钢管、薄壁铜管、塑料热水管、塑料和金属复合热水管等。
当选用塑料热水管或塑料和金属复合热水管材时,本条还作了下述规定:
1 管道的工作压力应按相应温度下的许用工作压力选择。塑料管材不同于钢管,能承受的压力受温度的影响很大。管内介质温度升高则其承受的压力骤降,因此,必须按相应介质温度下所需承受的工作压力来选择管材。
2 设备机房内的管道不应采用塑料热水管。设备机房内的管道安装维修时,可能要经常碰撞,有时可能还要站人,一般塑料管材质脆怕撞击,所以不应用作机房的连接管道。
6.8.3 热水管道因受热膨胀会产生伸长,如管道无自由伸缩的余地,则使管道内承受超过管道所许可的内应力,致使管道弯曲甚至破裂,并对管道两端固定支架产生很大推力。为了减释管道在膨胀时的内应力,设计时应尽量利用管道的自然转弯,当直线管段较长不能依靠自然补偿来解决膨胀伸长量时,应设置伸缩器。铜管、不锈钢管及塑料管的膨胀系数均不相同,设计计算中应分别按不同管材在管道上合理布置伸缩器。
6.8.4 在热水系统中,由于热水在管道内不断析出气体(溶解氧及二氧化碳),会使管内积气,如不及时排除,不但阻碍管道内的水流还加速管道内壁的腐蚀。为了使热水供应系统能正常运行,应在热水管道积聚空气的地方装自动放气阀。
在热水系统的最低点设泄水装置是为了放空系统中的水,以便维修。如在系统的最低处有配水点时,则可利用最低配水点泄水而不另设泄水装置。
6.8.8 本条对止回阀在热水系统中的设置位置作了规定。
2 本款规定是为了防止冷水进入热水系统,以保证配水点的供水温度。
3 本款规定是为了防止冷、热水通过冷热水混合器、恒温混合阀等相互串水而影响其他设备的正常使用。如设计成组混合器时,则止回阀可装在冷、热水的干管上。
6.8.9 本条对水加热器设置温度自动控制装置作了规定。
本条规定了所有水加热器均应设自动温度控制装置来控制调节出水温度。理由是节能节水,安全供水。人工控制温度,由于人工控制受人员素质、热媒、用水变化等多种因素影响,水加热器出水水温得不到有效控制,尤其是汽-水换热设备,有的水加热器内水温由于控制不到位长期达80℃以上,设备用不到一年就报废。因此,本条规定凡水加热器均应装自动温度控制装置。
自动温度控制阀的温度探测部分(一般为温包)设置部位应视水加热器本身结构确定。对于导流型容积式、半容积式水加热器,将温包放在出水口处是不合适的,因为当温包反应此处温度的变化时,罐体内的水温早已变了,自动温度控制阀再动作为时已晚,宜将温包放在靠近换热管束的上部位置。
自动温度控制阀应根据水加热器的类型,即有无贮存调节容积及容积的相对大小来确定相应的温度控制范围。根据半即热式水加热器产品标准等的规定,不同水加热器对自动温度控制阀的温度控制级别范围如表9。
表9 水加热器温度控制级别范围(℃)
半即热式水加热器除装自动温度控制阀外,还需有配套的其他温度调节与安全装置。
6.8.10 水加热设备的上部,热媒进出水(汽)管、贮热水罐和冷热水混合器上装温度计、压力表等,是便于操作人员观察设备及系统运行情况,做好运行记录,并可以减少、避免不安全事故。
承压容器上装设安全阀是劳动部门和压力容器有关规定的要求,也是闭式热水系统上一项必要的安全措施。用于热水系统的安全阀可按泄掉系统温升膨胀产生的压力来计算,其开启压力根据“压力容器”有关规定设定为容器设计压力的1.05倍。安全阀的型式一般可选用微启式弹簧安全阀。
6.8.12 据调查,在上行下给式的系统中管道的腐蚀较严重。管道的腐蚀与系统中不及时排除空气有关。因此,上行下给式系统供、回水横干管的坡度宜大于或等于0.005,下行上给式系统的最高配水点有可能长时间不用,气体就由回水立管带到横干管中而引起管道腐蚀,故下行上给式系统供回水横干管也宜设大于或等于0.003的坡度。
6.8.13 为适应建筑装修的要求,“塑料热水管宜暗设”。塑料热水管材材质较脆,怕撞击、怕紫外线照射,且其刚度(硬度)较差,因此不宜明装。对于外径小于或等于25mm的聚丁烯管、改性聚丙烯管、交联聚乙烯管等柔性管一般可以将管道直埋在建筑垫层内,但不允许将管道直接埋在钢筋混凝土结构墙板内。埋在垫层内的管道不应有接头。外径大于或等于32mm的塑料热水管可敷设在管井或吊顶内。
6.8.15 近年来,国内不少小区集中热水供应系统,室外热水干管大都采用埋地敷设,但其设计、施工均存在较大问题,以致使用中给物业及用户带来很大麻烦。因此,本条对室外热水管道敷设根据工程经验提出了具体要求。另外,为保证保温质量,宜采用工厂定制的保温成型制品作保温层。
6.8.16 热水管道穿越楼板时应加套管是为了防止管道膨胀伸缩移动造成管外壁四周出现缝隙,引起上层漏水至下层的事故。一般套管内径应比通过热水管的外径大2号~3号,中间填不燃烧材料再用沥青油膏之类的软密封防水填料灌平。套管高出地面应大于或等于50mm。
6.8.18 本条规定了用蒸汽作热媒的间接式水加热设备的凝结水回水管上应设疏水器。目的是保证热媒管道汽水分离,蒸汽畅通,不产生汽水撞击,延长设备使用寿命。
生活用水很不均匀,绝大部分时间,水加热器不在设计工况下工作,尤其是在水加热器初始升温或在很少用水的情况下升温时,由于一般温控装置难以根据水加热器内热水温升情况或被加热水流量大小来调节阀门开启度,因而此时的凝结水出水温度可能很高。对于这种用水不均匀又无灵敏可靠温控装置的水加热设备,当以饱和蒸汽为热媒时,均应在凝结水出水管上装疏水器。
每台设备各自装疏水器是为了防止水加热器热媒阻力不同(即背压不同)相互影响疏水器工作的效果。
6.8.19 本条规定了疏水器的口径不能直接按凝结水管管径选择,应按其最大排水量,进、出口最大压差,附加系数三个因素计算确定。
为了保证疏水器的使用效果,应在其前加过滤器。不宜附设旁通管,目的是杜绝疏水器该维修时不维修,开启旁通,疏水器形同虚设。但对于只有偶尔情况下才出现大于或等于80℃高温凝结水(正常工况时低于80℃)的管路亦可设旁通,即正常运行时凝结水从旁通管路走,特殊情况下凝结水经疏水器走。
6.9 饮水供应
6.9.2 饮水主要用于人员饮用,也可用于煮饭、淘米、洗涤瓜果蔬菜及冲洗餐具等。
6.9.3 本条对直饮水系统的水质、水嘴流率、供水系统方式、循环管网的设置及设计秒流量计算等分别作了规定。
1 直饮水一般均以市政给水为原水,经过深度处理方法制备而成,其水质应符合现行行业标准《饮用净水水质标准》CJ/T 94的规定。
管道直饮水系统水量小、水质要求高,目前常采用膜技术对其进行深度处理。膜处理又分成微滤(MF)、超滤(UF)、纳滤(NF)和反渗透膜(RO)四种方法。可视原水水质条件、工作压力、产品水的回收率及出水水质要求等因素进行选择。膜处理前设机械过滤器等前处理,膜处理后应进行消毒灭菌等后处理。
2 管道直饮水的用水量小,且其价格比一般生活给水贵得多,为了尽量避免直饮水的浪费,直饮水不能采用一般额定流量大的水嘴,而宜采用额定流量为0.04L/s左右的专用水嘴,其最低工作压力不得小于0.03MPa。专用水嘴的流量、压力值是“建筑和居住小区优质饮水供应技术”课题组实测市场上一种不锈钢鹅颈水嘴后推荐的参数。
4 本款推荐管道直饮水系统采用变频机组直接供水的方式。其目的是避免采用高位水箱贮水难以保证循环效果和直饮水水质的问题,同时,采用变频机组供水,还可使所有设备均集中在设备间,便于管理控制。
5 高层建筑管道直饮水系统竖向分区,基本同生活给水分区。有条件时分区的范围宜比生活给水分区小一点,这样更有利于节水。
分区的方法可采用减压阀,因饮水水质好,减压阀前可不加截污器。
6 管道直饮水必须设循环管道,并应保证干管和立管中饮水的有效循环。其目的是防止管网中长时间滞流的饮水在管道接头、阀门等局部不光滑处,由于细菌繁殖或微粒集聚等因素而产生水质污染和恶化的后果。循环回水系统一方面把系统中各种污染物及时去掉,控制水质的下降,同时又缩短了水在配水管网中的停留时间,借以抑制水中微生物的繁殖。本条规定“循环管网内水的停留不应超过12h”是根据现行行业标准《建筑与小区管道直饮水系统技术规程》CJJ 110-2017的条文编写的。
循环管网应同程布置,保证整个系统的循环效果。
由于循环系统很难实现支管循环,因此,从立管接至配水龙头的支管管段长度应尽量短,一般不宜超过6m。
8 饮用净水系统配水管的设计秒流量公式qg=m·qo是现行行业标准《管道直饮水系统技术规程》CJJ 110-2017所推荐的公式。式中m为计算管段上同时使用水嘴的数量,当水嘴数量在24个及24个以下时,m值可按本标准附录J表J.0.1直接取值;当水嘴数量大于24个时,在按式(J.0.3)计算取得水嘴使用概率po值后查附录J表J.0.2取值。
6.9.6 本条对饮水管的材质提出了具体要求,并首推薄壁不锈钢管作为饮水管管材。其理由是薄壁不锈钢管具有下列优点:①强度高且受温度变化的影响很小;②热传导率低,只有镀锌钢管的1/4,铜管的1/25;③耐腐蚀性能强;④管壁光滑卫生性能好,且阻力小。
相关文章:
https://zhuanlan.zhihu.com/p/360052684https://zhuanlan.zhihu.com/p/360141928